Screening for Extended Temperature on SDRAM Memory

Introduction

Temperature screening of commercial-grade memory is a proven cost effective way to produce extended temperature memory modules that are available with short production lead times. The following chart shows a summary of benefits using temperature screened memory module over memory modules using industrial-grade DRAM devices.

<table>
<thead>
<tr>
<th></th>
<th>Factory Extended Temperature Modules & Modules with Industrial DRAM</th>
<th>Extended Temperature Module Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>High</td>
<td><40%</td>
</tr>
<tr>
<td>Availability</td>
<td>Min. MOQ Build to Order 8 weeks lead-time</td>
<td>Any quantity No MOQ 3-4 weeks lead-time</td>
</tr>
</tbody>
</table>

The temperature range for screening is typically the industrial temperature E2 range from -40°C to +85°C. Memory modules screened for industrial temperature are suitable for high reliability requirements such as rugged COTS computers, industrial computers, mobile PCs, embedded Single Board Computers (SBCs), telecommunication servers, networking appliances, military-aerospace systems, medical and science research instrumentation.

The screening of memory modules usually occurs at the time of manufacture. They are tested at both ends of the temperature range over a specified period of time while the test computer is operating a software diagnostic tool. This “active” burn-in, also called Test During Burn In (TDBI) will screen out potentially weak DRAM on the memory modules. A “passive” burn-in approach on unpowered modules, is not used a screening technique because DRAM components must be powered on to frequently “refresh” the data.
IEEE conducted a study which concluded that DRAM devices can be “uprated” for elevated temperature and used outside the manufacturer-specified temperature range for extended periods of time [1]. Virtium has logged thousands of test hours with significant test data to show that temperature screening of commercial-grade memory modules (0 to +70°C) is a viable alternative to memory modules made with more expensive industrial grade memory devices (-40 to +85 °C).

A Case for Temperature Screening

Temperature screening as a viable alternative is based in the fact that there is a certain amount of overrating on the absolute maximum ratings and recommended operating conditions specified in DRAM data sheets.

1. Absolute maximum ratings (AMR) are limits for the “reliable” use of parts.
2. Recommended operating conditions are the conditions for which electrical functionality and specifications are guaranteed.

This indicates that the device temperature ratings are set for electrical performance reasons as opposed to package or device reliability reasons. The part temperature ratings are designated in the recommended operating conditions for parts. The limits for reliable operation of parts are designated by the absolute maximum ratings, but use at AMR conditions do not imply catastrophic failure. Almost all data sheets contain some form of warning statement or disclaimer to discourage or prohibit use of the parts at or near absolute maximum ratings.

None of these warnings point to any catastrophic failure at the AMR condition:

1. These are stress ratings only.
2. Stresses above these ratings can cause permanent damage to the parts.
3. Functional operation is not implied in these ranges.
4. Exposure to these conditions for extended periods may affect reliability and reduce useful life.

In addition to the extended temperature screening methodology mentioned above, there are two Bill of Material (BOM) items that are part of the design for temperature screened memory modules. The first is the use selected stabilized DRAM die revisions from the DRAM device manufacturers and the other is the use of high speed DRAM for improved timing margins.

Beyond extended temperature screening, there are additional enhancements that provide further protection in environments with high moisture, humidity, shock, vibration or low flow air cooling:

- Conformal Coating, Type 1B31 acrylic, MIL-I-46058 Rev. C. Type AR
- Under-fill, epoxy-based
- Thermal sensor, SPD defined for increase DRAM refresh rate or fan speed
- Thermal heat spreader and/or aluminum heat sink

--

Virtium manufactures memory and storage solutions for the world’s top industrial embedded OEMs. For two decades we have designed, built and supported our products in the USA - fortified by a network of global locations. Our world-class technology and unsurpassed support provide a superior customer experience that continuously results in better industrial embedded products for our increasingly interconnected world.

© Copyright 2015. All rights reserved. Virtium®, Storfly® and TuffDrive® are registered trademarks of Virtium Technology Inc. All other non-Virtium product names are trademarks of their respective companies.

Virtium
Memory and Storage Solutions

30052 Tomas | Rancho Santa Margarita, CA 92688
Phone: 949-888-2444 | Fax: 949-888-2445
www.virtium.com

WP012-0315-01